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Abstract 

The effect of finite sample thickness on material elasticity measurements made 

using an Atomic Force Microscope (AFM) has been calculated. The model includes an 

elastic layer on an elastic foundation and simulates sample indentation under an applied 

load, for rigid axisymmetric tips with conical, paraboloidal, and hyperboloidal profiles. 

The results show that a common approach to estimating elastic modulus from force- 

displacement curves can lead to significant error that depends on the units of 

measurement. A method to estimate this error unambiguously and correct it is proposed. 

In addition, it is shown that elasticity estimates for monolayer thick samples using the 

force-modulation technique have substantial, sample thickness-dependent error. Local 

thickness variation can result in misleading contrast in force modulation images for 

samples that are several nanometers thick. 



Atomic Force Microscopy (AFM) measurements are often made on thin film 

samples with thickness ranging from few nanometers to microns. Quantitative elasticity 

measurements using AFM are usually interpreted assuming semi-infinite sample 

geometry. " In this paper we model the effect of substrate on elasticity measurements 

made on thin films. This effect is particularly important when Young modulus mapping is 

performed on samples exhibiting inhomogeneous thickness variation13, and when a 

breakdown of macroscopic models of elasticity is tested. The modulus of elasticity for 

typical polymeric and biological samples is usually several orders of magnitude smaller 

than the modulus of the underlying hard substrate1. We calculate the sample's indentation 

by considering a rigid axisymmetric tip under an applied load, and we report a significant 

error arising from the common assumption of infinite sample thickness. We consider 

conical, paraboloidal, and hyperboloidal tip geometries. 

Presently the most common techniques for measuring elasticity with high spatial 

resolution are indentation measurements u 2' 6"12 and force-modulation 3"5 experiments, 

which are performed using AFM. These measurements are interpreted using a model for 

a paraboloidal or conical tip elastically indenting a half-space sample. However, sharp 

AFM tips often have a conical shape with a rounded apex (manufacturers usually specify 

10 - 100 nm radius of curvature). Thus, to simulate this shape we choose a hyperboloidal 

tip profile. Figure la shows the shapes of tips we use, Figure lb shows the geometry of 

indentation and introduces the variables and parameters we use later in this article. 

The elastic modulus for a semi-infinite sample can be estimated using the load- 

indentation dependencies as described by Sneddon.14 
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Equation, la-e respond «o conical, paraboloidal and hyperboloida, shapes of 

revolution, respectively. Here F is load, S- indentation, „- contact area radius,, - tip 

radius of curvature, a - tip ^aW ^ E. Yom]g „^ ^ ^ ^ ^ 

filustrateo in Figure ,. From Equations la-b it may be soen tha, a linear fit in ,og(F) vs. 

log(<5> coordinates has an intercept related to the Young modulus: 

We first note that using Equation 2a (conica, shape) for tips with r0lmded ^ 

results in considerable error. For e*amp,e, in order ,„ estimate the You,* modulus within 

a factor of two (using hyperboloidal tip with 20» semi-vertica! angie and ,0 nm radius of 

curvature, according to Equations !c) the maximum indentation shouid he larger than 2 5 

,m. On the other hartd, Equation 2b gives ^ ^ ^ fc ^^ ^ ^ ^ 

400 nm using the same parameters. ™. „ mticipated since ^^ u ^^ ^ 

la when Ä -satanfa), and into lb when a^Ä „»^1. 

I. is intuitively clear that if a soft sample rests on a hard foundation, then the tip 

starts to »fee,» substntcture when the tadius of contact area is comparable to fire sample. 
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thickness. » This Iesahs -m force.todentation curves ^ ^ ^^ ^ ]ogarthmic 

coordinates. Fig^ 2 is an explicit illusion of such an effect. He Figure shews foe 

indentation   of  a   -30   „m   ,Uck   ^.^   ^   rf  ^   ^^ 

polyvinylpyridine, polymer on a microscope coverslip substmte.« Tie up redius was 

approximately 60 nm. 

For this type of response, Young modulus es.hna.es can have an error tot varies 

with the units of measurement, Indeed, the error depends upon the disfonce between 

intercept of foe linenr ft ^ {s., mit) ^ ^ ^ ^^ ^ ^ ^ 

assumed when deriving Equations 1. As illustrated in Figure 2, snch an error can even 

change sign Using the units shown on Figure 2, the estimated moduius would be two 

times smaller than me modulus obtained when M value is small. 

To clarify this problem we have performed numerical calculations, which 

simulate me indentation of an elastic layer bonded to an elastic foundation. Our 

computations are based on an elastic layer model by Dhaliwal and Rau «. Force- 

indentation curves are obtained by solving a Fredholm integm! Eqnation of foe second 

kind: 

o V/ -x 
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where K(x,t) is the kernel of the integral Equation, E and .are the Young modulus and 

the Poisson ratio of the layer, respectively. The kernel is defined 

K{x,t)=2\H{2u)cos \±tu   cos f ^ 1 
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H is the ratio of Lame constants   M = {E/2(1 + <T))/(E1/2(1 + CT1)   
l9,f(x) in Equation (3) 

is the tip shape function, and here we use the following shapes 17 : 

f(x) = axcota, conical   tip 

f\x)=  /2RX     ' paraboloid al   tip 

f(x) = R cot2 a\J(axlR cot of +1 - ll   hyperboloidal   tip 

where a is the radius of the tip-sample contact area, R - radius of the curvature of the tip 

apex, a- tip semi-vertical angle as shown on Figure 1. 

To find the indentation 8, we use the condition that the normal component of 

stress remains finite around the circle of contact between the tip and the sample. A 

solution of (3) must satisfy 17 

*KO=o (5) 

We solve Equation (3) numerically to determine the indentation. For each value 

of the contact radius a we iteratively find the indentation £such that the solution of (3) 

satisfies (5), and we find the load force according to 17 : 

F =-4 ]>(,)* (6) 
o 

To estimate the error in the Young modulus unambiguously we plot logarithmic 

force indentation curves in normalized coordinate units:18 
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For conical and paraboloidal tips, force vs. indentation curves plotted in these 

coordinates change only when ratio of Lame coefficients, A changes. M shows the 

mismatch between the rigidity modulus of the top layer and the rigidity modulus of the 

substrate. When M=l and *=vh the kernel vanishes and Equation 3 becomes equivalent 

to the Abel integral equation considered by Sneddon "  The elastic layer indentation 

curves are not linear in logarithmic coordinates. Therefore, the slope and the intercept of 

straight lines fitted through the data points depend upon the maximum indentation value. 

The Young modulus can be estimated in normalized coordinates using Equations la and 

lb with force and indentation substituted from Equations 7a and 7b for any maximum 

indentation value. Hereafter we use the term Young modulus to indicate the true Young 

modulus of the top layer material, and »estimated Young modulus» to mean the Young 

modulus estimated from the linear fit. We calculate the ratio of this estimated Young 

modulus to the modulus of the top layer (we call this ratio a reduced Young modulus) and 

plot it versus normalized maximum indentation. Plots for different values of// are shown 

in Figure 3. The left panel shows a calculation for a conical tip, and the right panel shows 

the calculation for a paraboloidal tip. „ values are shown to the right of each curve. We 

used equally spaced 5 values in our calculation. In the ATM experiment this is correct 

when the cantilever spring constant is considerably larger than the surface spring 

constant. 



The reduced modulus from Figure 3 can be used as a correction factor to obtain a 

better estimate of the Young modulus for soft samples. Indeed, the lines for ß less than 

It)"3 are almost indistinguishable. Therefore these lines can be used as correction factors 

for samples with Young modulus -0.1 GPa and less and substrate modulus -100 GPa. 

For larger values of ju an iterative procedure can be used to correct both E and A 

As an explicit example using the data plotted on Figure 2, we calculate     S       and 

F  according to 7b. We take ^=0.33 as a reasonable suggestion. The estimated Young 

modulus is calculated from the intercept of linear fit in log-log coordinates according to 

equation   E = 3exp(A)/V2    , where b is the intercept. Thus we obtain £=133 MPa. The 

maximum normalized indentation is S_ =0.88 . Using Figure 3 we can conclude that E is 

overestimated by a factor -2.1, thus the true modulus E=63 MPa. This value of Young 

modulus happens to be close to the one used to calculate the dashed line on Figure 2, 58 

MPa. We note that our indentation values are not equally spaced, which contributes to 

inaccuracy in the modulus determination. It is important to know the layer thickness 

accurately to determine the correction for E (since normalized indentation in 7b is 

proportional to h"2 ). On the other hand, if the Young modulus is known, the steep 

dependence of E on h can be used to estimate the layer thickness. 

Force - indentation curves for a hyperboloidal tip were transformed according to 

Equation 7b. The results are shown on Figure 4, which shows the reduced Young 

modulus plotted against the maximum normalized indentation, for j^0 and different h/(R 

cot a) ratios. If the h/(R cot a) ratio is small (less than 0.1) then the hyperboloidal tip 

indentation curves are very close to the paraboloidal tip curve (dashed line). Also small 

values of normalized indentation correspond to a small ratio of maximum contact area 



radius t„ layer thickness. In m ^ ^^ ^ ^^ ^ ^ ^ ^ 

paraboloida. tip indentation. 0therwise> hyper(x)loidal ^ ^ ^ ^ ^ 

described by simple models and should be treated explicitly. 

In addition, we would like to comment on me use of the force moduiation method 

«o determine the elasticity ofthto layer, in this method the sample osculates at a certain 

frequency, and mis oscfflation b sensed by the up, which contacts the sample The 

amplitude of the tip oscillation depends upon a sample stiflhess and, for a semi-infmite 

sample, the Young modulus can be estimated using the following Equation >: 

V       6RF (8) 

where fc is cantilever spring constant, * - tip ^ of „^ , _ ^ ^ 

applied to the sample, 2 - modulation „^ „f ^ ^ ^ _ ^ ^^ 

amplitude. For a thin sample such an estimate ean result in substantial error. Figure 5 

shows the reduced Young modulus estimated according to Equation 8 v, applied load for 

samples of different thickness. TTre calculation parameters are given in the figmes 

caption. Figure 5 demonatra.es that a change in the sample thickness may result in an 

apparent softness contrast in force-modulation images. 

Figure 6 shows the same dependence as Figure 5, where the lines are calculated in 

normalized coordinates using Equations 7b and 8 for seveml values of ß. If the Uyer 

thickness, tip radius and elastic parameters of substrate «,, „, « ^ „, , 

reasonable assumption about Poisson ratio „f elastic layer can be made, the reduced 

elastic modulus ftom Figure 6 can be used to correct the error in measured modulus. 

Since we do not know correct value for „ (i, depends on tine Young modulus), an 

^sit. 
*&'•;&!. 



iterative procedure can be employed to determine the correction coefficient E . Let E* be 

the symbol for the Young modulus, as estimated from equation 8. To obtain the 

correction factor for E*, the corresponding average normalized load can be obtained from 

Equation 7b. This gives the fixed position on the abscissa of Figure 6. The ratio of E* to 

the Young modulus of substrate (£;) gives an approximate // value. From Figure 6, an 

approximate correction factor E can be found, from which we find a better estimate for 

//=£*/(££;) This gives an adjusted correction factor E, which in turn improves the 

estimate of p. The iterations converge in a few steps to a best value for //, resulting in the 

correction fector for E*. For an explicit example, we consider E* =0.5 GPa, Er 100 

GPa, and F =1. The iterative process using these parameters is shown with circles on 

Figure 6. Initially we have //«0.005. From the figure we can see that for this//, |«3. 

This decreases the estimate of// to 0.0016, giving us £«4.5 . The next step results in 

E*5, and subsequent iteration does not change E significantly. Thus, we can conclude 

that the true elastic modulus is close to 0.1 GPa. 

In summary, we have used an elastic layer on an elastic foundation model to 

calculate the error associated with using elastic half-space model to estimate the Young 

modulus in AFM indentation and force modulation experiments. We find that the 

application of semi-infinite sample models can result in unpredictable and significant 

error in Young modulus estimates. Normalized coordinates should be used to obtain 

consistent results. Contrast in the force-modulation imaging may be related to 

inhomogeneity in the sample thickness. We have proposed a method for reducing the 

error related to finite sample thickness. 
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Figure Captions 

1.  (a) AFM tip profiles considered in this paper, a - semi-vertical angle, R - radius of 

curvature of the tip apex, (b) Geometry of sample indentation: 5- indentation; F- 

load; a - contact area radius; kc cantilever spring constant; h - sample layer thickness, 

E, Ej, a, oj - Young moduli and Poisson ratios of the sample layer and substrate, 

respectively. 

2.  Deviation of load-indentation from power law dependence. Force - indentation data 

was collected on a -30 nm thick spin-cast sample of coblock (polystyrene- 

polyvinylpyridine) polymer on a microscope coverslip substrate. The tip radius was 

approximately 60 nm Fitting to a straight line in logarithmic coordinates gives an 

error in the Young modulus which depend upon the origin that is chosen for log(8), 

which is determined by the units of measurement. Here a solid line is the best linear 

fit to the force-indentation values that are shown as '+• symbols. The dashed line was 

calculated'according Equation la with the Young modulus calculated from the data 

subset with a small a/h ratio. The brackets indicate a mismatch in the intercept, which 

is related to the error in the Young modulus (Equations 2). Two possible positions of 

log(S) origin are shown. 

3.  X axis - normalized maximum indentation, Y axis - ratio of Young modulus 

estimated from linear fit to modulus of top layer. Left panel - conical tip, right panel 

- paraboloidal tip. Different lines correspond to different ratio of Lame coefficients, 

lines a -g //correspond to 1, 0.46, 0.22, 0.1, 0.046, 0.01, and 0.001, respectively. 
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4.  Reduced Young moduius piotted v, normaiized maximum indentation for 

hyperboioida. tip (soM Iines, Coordimtes ^^ ^ ^ ^ ^^ 

•ip Equations 7b. Here ^.^ and hues (front the top) correspond to m M „ 

ratios: ,.7, ,2, 0.84, 0.58, 0,6 and 0,8. For comparison we show a calcuiation for 

the paraboloidal tip (dashed line). 

5.  Ratio of the tnoduius esthnated using Equation (8) ,0 achtai vaiue given as function of 

average ioad for sampies of different thickness. Different iines correspond to different 

layer thickness. The thickness (front 1,0 ,00 nnt) is indicated on the graph. Outer 

parameters.- ,ip^of^^ ,„ ^^^ ^ ^ ^^ ^ 

oscillation amplitude 0.02 nm. 

6. Piots of the reduced „toduius v, the normalized force for different, vaiues iiinstrate 

a possihie error in the Young ntoduius as determined usittg the force-ntoduiation 

technique. Starting from the top „ om< „ ^ „ ^ ^ ^ ^ ^ 

0.22 and 0.46. Circies show an iterative process to determine the correction factor &r 

estimated Young modulus. 

14 
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